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1. INTRODUCTION

This report is a incomplete draft of a paper describing the physics,

algorithms, and numerical methods used in the two-dimensional magnetohydro-

dynamic simulation code MACH2. It is being released in this form so that

any aid it might provide to users of the code will be available as soon as

possible. The author hopes that the final version of this report will be

improved by this early review, and will gladly receive any comments or

reports of errors which the reader might care to send to him.

The proposed outline for missing sections of the report is as follows:

Section

10. ITERATION PROCEDURES

10.1 JACOBI ITERATION
10.2 MULTIGRID ACCELERATION
10.3 THERMAL DIFFUSION
10.4 MAGNETIC DIFFUSION
10.5 CORRECTION OF NON-SOLENOIDAL DEVIATION
10.6 LAGRANGIAN HYDRODYNAMICS

4 11. IMPLEMENTATION

11.1 DATA STRUCTURE

11.1.1 Geometry Description

11.1.2 Spatially Dependent Physical Quantities

11.2 BOUNDARY CONDITIONS

11.2.1 Boundary Condition Control
11.2.2 Application by Stride
11.2.3 Use of BCPOINT and BCPNTRS

11.3 DATA FLOW BY PHYSICAL PROCESS

In addition, material will be added to the sections dealing with time and

space differencing to describe the recently added code which ensures that

the poloidal magnetic field remains divergence free. In addition,

. _
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appendices connecting the thporetical descriptions of this report with the

actual subroutines and variaoles of the code will be included in the final

version of this report.

Even in this draft, the author wishes to acknowledge the dependence of

the development of MACH2 on the contributions and strong efforts of many

others. Without the technical foundation and help provided by Jerry

Brackbill, this effort could not even have been attempted. He provided the

source code for MOQUI, out of which MACH2 grew. The faith and support of

Bob Reinovsky, Jim Degnan, and Bill Baker was as inspirational as it was

essential. Moreover, considering how seldom experimentalists are willing

to support applied theoretical efforts such as this, it was extraordinary.

Their foresight and wisdom in this matter is a clear example for others to

emulate. The importance of the technical advice and moral support given by

Jim Buff and Norm Roderick can not be overstated. Their physical insights

and experience with other simulation codes often provided the keys to

unravel particularly knotty puzzles. Peter Turchi played a special role

which must be mentioned. When the development of MACH2 entered that most

difficult stage where the code ran, but its answers were not yet trusted,

his insight and understanding of magnetohydrodynamics were an essential

part of the process of persuasion. In the end, the succe'ss of the develop-

ment effort hinged on the skills and efforts of those who actually wrote

and debugged code. Bob Peterkin deserves most of the credit for the

physics code while to Tony Giancola goes credit for the graphics, restart,

and system interface code. Both made significant and substantial contri-

butions in all phases of the development from the design stage through

initial applications. The author is proud to be associated with this most

capable team.

.3,
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", 2. PHYSICAL MODELlip,

The physical models in the code today are largely those that are

required to generate believable solutions to fast imploding liner or plasma

flow switch problems. Specifically, the code includes ideal MHD, resistive

diffusion of magnetic field and consequent joule heating, thermal dif-

fusion, and radiation cooling. The differential equations expressing the

conservation laws relevant to these processes will be described in detail

below. In what follows d/dt represents the convective derivative.

2.1 THE MHD ELECTROMAGNETIC FIELD EQUATIONS

As explained in Jackson (Ref. 1), plasma phenomena with characteristic

times much longer than the plasma oscillation period can be analyzed by

neglecting the displacement current; this is the MHD approximation. In

rationalized MKSA units then, the MHD fields are described by

x' -E + a -B 0
'at

.. .t

x V B 0 J (1)

'U

supplemented by an equation relating J and f that depends on the properties

of the medium, i.e., Ohm's law

I

-# E =nd v x B

The electromagnetic units used in MACH2 are selected so that Uo = I and are

related to the MKSA units by the following equations:

. -1 1
SM2Vo MKSA BM2 B oMKSA MKSA

JM2VMKSA JMKSA nM2 'rlMKSA nMKSA (2)

I-



In this system of units, the magnetic energy density is

n B2  /2 (3)
m M2

and has units of Joules/meter 3 . Henceforth, the subscript M2 will be

suppressed, and all equations written in these units. Thus, the field

equations in MAGH2 are

+ 0*a t

v MIN (4)

Application of Ohm's law for the moving fluid yields

aB T) ~ ( (5)

This can be rewritten as

dB. - x- (nVx V)-( - V. v) (6)

where the left-hand side represents the field transport, the first term of

the right-hand side represents diffusion of field, and the second, the
modification of field intensity by the divergence of the velocity field

transverse to 8

The resistivity used consists of two terms: one is classical and due

to particle-particle interactions, the other is non-classical (anomalous)

4 and intended to model particle interactions with the turbulent fields. The

classical resistivity may be taken from a SESAME format table or computed

from a Spitzer-like formula; the anomalous resistivity is always computed

from a formula based on the ion acoustic frequency.

4



- - - -

2.2 THE MHD MOMENTUM EQUATION

The compressible Navier-Stokes equations supplemented by the addition

of the electromagnetic force are

d -v + - (7)

It is possible, and convenient, to write the entire right-hand side as the

divergence of a tensor:

(-vp + J x B + V -p) Ixj [P "IBI 2 )6ij + BiBj + Gij)

I (v • (8)

2.3 THE CONTINUITY EQUATION

*. Conservation of mass is represented by

dt- - * V- • (9)

2.4 THE ENERGY EQUATION

If we let e be the internal energy per unit mass, then the energy

equation in MACH2 is

de P + (n -x V x

+ ( -v V Fdiff qrad (10)

and includes the flow work, Joule heating due to diffusion of magnetic

field, diffusive transport of energy by thermal conduction or equilibrium

%5'
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diffusion of radiation, and radiation cooling. The thermal conduction flux

is limited to some fraction of the free-streaming flux which would he

achieved if all the plasma on the high temperature side moved opposite to

the gradient at the local average thermal velocity. The limit on the
* thermal flux is actually applied by limiting the thermal conductivity. Let

k axbe the maximum allowable value of the thermal conductivity determined

by

~ .%33/2

k max -CnT(1

17 TI

Then, if the thermal conductivity determined by local plasma conditions is

k , the effective, or limited, thermal conductivity k eis determined by

k k
k p max (2

e k + max

The thermal conductivity k which gives an energy flux equivalent to that
r

due to diffusion of a radiation field in equilibrium with the plasma is

CT3
k r 2(13)

The diffusive flux of energy is then

F =-k + k(14)
diff e kr) vT

The radiation cooling rate is taken to be

%rao - 3 44(5

%



This is applicable when the plasma is thin, and the rad- *ion spectrum may

be assumed to be Planckian.

2.5 THE EQUATIONS OF STATE AND TRANSPORT PROPERTIES

All of the equations of state quantities, and some of the transport

N properties, are determined using EOSPAC (Ref. 2) to do table look-up in the
-~ Los Alamos SESAME Equation of State Library (Ref. 3). The models used to

generate these tables are among the best known; however, there are regions

in density and temperature space where interpolation between models has

been used. In general, those regions are there because no tractable

numerical model exists which applies; hence, no simple analytic model is

likely to be superior!

0~ 7/8
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3. ROUNDARY CONDITIONS

Modeling complex experiments requires a wide variety of boundary

treatments even for this modest list of physics. The mathematical expres-

sion of these will be detailed below, organized by the physics to which

they apply. Details of a numerical or code implementation nature will be

given in later sections.

The philosophy of all boundary condition application in the code is

that the conditions described are the limit of conditions in the fluid as

the boundary is approached. Thus, the boundary of the computational region

is the edge of the region in which physical modeling is done. Quantities

outside this region are assumed known or related to quantities inside by,

at most, simple instantaneous geometric statements. Specifically, no time

integration of spatially varying quantities is carried on outside the prob-

lem boundaries.

Figure I shows a small section of problem boundary and gives the geo-

metric quantities which will be used in the description of boundary con-

ditions to follow.

~~PROBLEM "
EXTERIOR

" PROBLEM
/ INTERIOR

//

Figure 1. Boundary geometric quantities.
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The tangent vector field, tand the normal vector field, 'n, will be taken

to be normalized so that

Js..I* 'F V = (16)

No convention will be adopted for the sense of _n and TE; it will be speci-

fied only if circumstances require it.

The normal and tangent vectors always are taken as lying in the compu-

tational plane. That is

T. =9 0 (17)

for cylindrical symmetry and

n z 0

T z 0(18)

for planar symmetry.

Discussion in the remainder of this section will be restricted to the

cylindrical case. In all cases, the results of that discussion may be

extended to planar symmetry by the transformation of

r + x

Z+ y (19)

0 10
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for and the substitution r = 1 where r is used algebraically and not as a

coordinate.

3.1 MAGNETIC FIELD BOUNDARY CONDITIONS

The boundary conditions used in the code represent those appropriate

within the fluid at the surface of idealized conductors and insulators, at

a symmetry boundary, or at the axis of cylindrical symmetry.

0 3.1.1 Perfect Conductor--As shown in Jackson (Ref. 4), the surface

charge and current instantly nullify any non-zero field in a perfect con-

4 ductor. Since the normal component of B and the tangential component of r
must be continuous through the surface, it follows that as the surface is

approached from outside the conductor the following are true in the limit:

+'p

i,

n x 0 o(20)

Since the magnetic field is the fundamental quantity in the code the second

equation above must be transformed into an equation involving T. The

appropriate equation is

a ,

nx E= nX (nJ - v ) = 0 (21)

The resistivity will be considered scalar here. Thus, x(nj) =n(nx-).

Since nx(vxB) (n- B)v-(n - v) B and n - B = 0 we have

n (n x -) + (n. .v) B :0 (22)

If the boundary is such that n v = 0, i.e., it is either a free slip or a

no slip boundary, then this becomes

11
0I+



n x= 0

or

" ,,

and

n J - n J r 0 (23)
k.~.- rz Z r

Written in terms of B, the coordinatized version of this in cylindrical

coordinates (where a/ae 0 0) is

",' .r: * . :

and <=> and

(x) = 0 n. V (t •B) :0 (24)

and

-n • v(rB) : 0 (25)r

It is interesting to contemplate what effect a porous perfect conductor

(one for which n • v * 0) would have on the field adjacent to it, but in

the range of energy densities of interest to us, it would probably plug up

'S immediately with ablated mass. Thus, perfect conductors are modeled by

Equations 23 through 25.

3.1.2 Perfect Insulator--No current flows into or out of a perfectly

insulating wall. Thus, = 0 at the wall. Since

aB r a Bz 1
n J (nr' 0, nz 57 ' z- r 1 r r rB8

); r zr 'r e e
, ' =T-- , •

1

I _t 7 V(rB) (26)

12
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where T . = 0 and is tangent to the wall, it is clear that rB is con-

stant along an insulating wall. The constant, of course, is proportional

to the total current flowing through the (possibly empty) center of the

(possibly) annular surface of revolution forming the wall. It can, there-

* fore, vary from one insulating boundary to another.

While n *3=0 is quite restrictive on B 99it has no content for

8 and 8B in azimuthally symmetric geometry, since B rand B Zaffect only

3 and n due to the cylindrical symmetry. Thus, the appropriate bound-e -4-5
ary condition for B rand B zat a perfect insulator is that they be specif-

ied by external considerations. For example, they may be determined from

.1" specified current flowing in conductors such as Helmholtz coils outside the
region of interest. Figure 2 shows such a configuration.

SPECIFIED

SX

MR/

INSULATOR

Figure 2. A problem with insulating boundary conditions.

The magnetic field at boundary points such as P may be determined by

applying the Biot-Savart law to the segmented conducting loops. This field

will diffuse into the conducting fluid, and induce current in it.

g~. 13



3.1.3 Symmetry Surface--'t is often possible to take advantage of

symmetry in the problem geometry to eliminate half the problem. Usually,

this is done by applying a boundary condition which implies that the con-

ditions just outside the problem region are a mirror image of those inside

it. For the magnetic field, the appropriate conditions may be derived from

the requirements that tangential components of (J rJ ) and (9 z ) he

zero on such a boundary, and the normal components of (B r,B ) be continu-

ous. The first of these requires that

n-. V (rBe = 0 (27)
r 0 =

while the other two require

t B . 0

n 7v (n • B) = 0 (28)

where we make the assumption then n is extended off the boundary so then

n . vn = 0.

3.1.4 The Axis of Cylindrical Symmetry--At r = 0, the appropriate

".--a. conditions are that

B =0

B :0
r

J =0 (29)

Since

aB ag-Br zB
J 3z r 7(30)

Equations 29 are completely equivalent to

14



3 =0

r

-=z0 (31)

3.2 HYDRODYNAMIC BOUNDARY CONDITIONS

* The boundary conditions applied to the hydrodynamic quantities repre-

sent those conditions within the fluid at the surface of walls, at inlets,

and outlets where external conditions are presumed known, at inlets and

outlets where external conditions are the same as the internal conditions

adjacent to the surface, and at the axis of cylindrical symmetry.

3.2.1 Wdlls--At a boundary representing an impermeable wall, the
relevant boundary condition is either free slip

n V 7=0 (32)

or no slip

V 0 (33)

3.2.2 Inlets and Outlets--At an inlet the properties which determine

a' the stress tensor and the convective fluxes must be specified. There the

boundary conditions must include

e=einlet orT Tinlet

and

= "nlet (34)

( They must also include

4': 15
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= Vinle t  (35)

The same quantities must be rest-icted at an outlet:

S- e 0

, -" vp = 0

n • _ v 0 (36)

3.2.3 The Axis of Cylindrical Symmetry--At r 0 0, the appropriate

conditions are

V =0
r

v =0 (37)

3.3 THERMAL CONDUCTION BOUNDARY CONDITIONS

The conditions applied to the temperature at boundaries are of two

types: conduction to a fixed temperature reservoir of infinite heat

capacity, and no flux at all. In the former case, the condition is

T = Twall (38)

and in the latter it is

nV T 0 (39)

.16
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4. GEOMETRIC PROBLEM CLASS

The geometries of real experimental devices are usually much more corn-

plex than the idealized geometries that motivate the experimental design.

*0 Yet these deviations from the ideal geometry may have significant quantita-

tive and qualitative effects on the results. It is thus essential that a

two-dimensional code be capable of solving problems in domains which

closely model the real device. Further, some interesting experimental

*0 effects cannot be seen at all in idealized geometry. Exploration of them

with simulation codes limited to domains with idealized geometry is clearly

impossible.

4 MACH2 was designed to handle any of a broad geometric class of domains

without code modification. In this section, that geometric class will be

described, and some complex experimental domains shown to be admissible in

that class.

A subset B of R2 given by

B =,,b :la(x,y)x R2  a < x < bX , ay < y < by} (40)

where a = (ax, a y) and b = (b x, by ), is a rectangle and will be referred

to as a block. Recall that a diffeomorphism is a smoothly invertible

smooth mapping, that is, a sufficiently differentiable function

6

f : U C R2  R2  (41)

for whicn there exists sufficiently differentiable function

g : W C R2 + R2  (42)

called the inverse of f, which satisfies

g(f(w)) : u for all ueU (43)

17
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* and

,t. f(g(w)) = w for all wEW (44)

N> A region B C R2 which is the diffeomorphic image of a block will be

N - called block-like.

"* The regions shown in Figure 3 are examples of block-like regions,

which may be thought of as rectangles formed from rubber sheets which are

deformed by the diffeomorphism. The examples in Figure 4 are also block-

like except that the diffeomorphism is not one-to-one on the entire block,

but is mltiple valued on at least one edge. Thus, the inverse mapping is

singular at the sector center and at the joining cut in the annulus. Such

ft regions will be called singular block-like regions.
0

The geometric objects which MACH2 is designed to treat as domains con-

sist of a particular kind of union of block-like regions. They are best

V described as (almost) diffeomorphic images of a union of blocks

'ft n

i (45)
"-'ft

with the ai and bi, chosen so that any two blocks which meet, do so only-f..- -

along an entire edge or at a vertex. Such a collection of blocks will be

called a block complex. Figure 5 shows some examples of block complexes.

They resemble subsets of checkerboard consisting only of whole squares. It

'%" is natural to call the diffeomorphic image of a block complex, a block-like

'. complex.

This class is quite broad. It is more than broad enough to include

realistic experimental configurations. Figure 6 shows two configurations

in interest which are within the geometric class described above. In the

-j present version MACH2, corners of a logical block must meet other logical

blocks only at their corners. Further, any change in boundary condition,

o18
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Figure 3. Block-like regions.

Figure 4. Singular block-like regi ons.

AMRC-R-874

Figure 5. Block complexes.
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DIFFEOMORPHISM : X (17,t ), YH(r,t)
(NUMERICALLY GENERATED GRID: (X i,i, Yi, j

BLOCK COMPLEX BLOCK-LIKE COMPLE

(LOGICAL SPACE) (PHYSICAL SPACE)

a) PLASMA FLOW SWITCH

BLOCK COMPLEX BLOCKLIKE COMPLEX

• . b) SPHERICAL LINER IMPLOSION

AMRC-R-874

Figure 6. Real experimental configurations as block-like complexes.

20
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whether physical or grid, any sharp change of direction of the region

boundary, or any change in uniform initial condition, must occur at a block

corner or edge. Thus, some of the block interfaces shown in Figure 5 are

required for non-geometric reasons.

i-
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5. COORDINATE SYSTEM

In MACH2 the physical quantities are computed on a coordinate system

which moves arbitrarily in space. Since such coordinate systems can be

made to remain fixed in space or to move with the fluid, they are called

Arbitrary Lagrangian-Eulerian systems. Clearly, this name is unfortunate,

and we will prefer "arbitrary coordinate system" or "arbitrary fluid

description".

The principal advantages of such a description, described in Refer-

ences 5 and 6, are that some of the catastrophic coordinate distortion

common with a Lagrangian description and the diffusive inaccuracy of the

Eulerian description can be avoided. The principal disadvantage is that a

prescription for the coordinate system motion must be supplied.

In MACH2, the coordinate system for a block-like complex is described

by a collection of function pairs

':{ Xl~ ' ' ) 'Y~ ' ' )  (n, ) E BI ,  t E: R+ ,  1 ,.. .L (46)

defined on the collection of L individual blocks, B1, making up the block

complex which is the domain. The coordinates (n,) are just the contin-

uous extensions of the integer array coordinates (ij) that will make their

appearance upon discretization. All of the physical quantities are alsoI
described as functions of (n, ) E 81, so that the full problem is actually

• given by a parametric description. That is ', p, and v are stored as

* functions of 1, and of (n, ) rather than (x,y).

4%
In the next two subsections, the range of choices of coordinate

*. systems available in MACH2 and the effects of this choice on the physical

. model, as represented by the partial differential equations of Section 2,

will be described. Coordinates in the logical domain (l,n, ) will be

represented by E.
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5.1 COORDINATE SYSTEM MOTION

The coordinate system x(-,t) is allowed to move according to

dx- (47)
dt

.

where v is the fluid velocity, x is an "ideal" coordinate created by a

numerical grid generation procedure which we will describe shortly, and the

control functions a(-) and B(-) are user specified.

The Langrangian coordinate system results if a 0 and 6 1, while

the Eulerian coordinate system appears if both , and B are identically

zero. Sensible values for a lie in the range 0 < a < I/T, where T is some

relaxation time, while B must be either 0 or 1. Thus, ( is a relaxation

parameter telling how quickly the actual coordinate system moves toward the

ideal coordinate system.

5.2 THE IDEAL COORDINATE SYSTEM

The ideal coordinate system is generated by solving a Brackbill-

Saltzman variational problem on the block complex domain subject to user

specified external and internal boundary conditions and using a weight

function selected from a standard family by the values of user specified

parameters. The details of the variational problem and its Euler equations

are described in Brackbill (Ref. 7), and their implementation for block-

0 like complexes is described in Reference 8. For completeness, a brief

description will be given here.

A. Let

-. . "a x a x

- . I

,a

I a_ an
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so that J, the Jacobian of the mapping (n, ) -- (x,y), is given by

J = det (d-) (49)

Then, the variational problem for the mesh is stated as

+ (df-xId xT + xo ( (d--x1 )  dA : 0 (50)

where x and x are user specified parameters, D is the block complex

domain, and the nonlinear operators .Y, 1, and C'are local measures of the

mesh smoothness, its nearness to desired concentration, and its orthogonal-

ity, respectively. These operators are given by

x 2 2 2 21 /d) + 4) + (X () jO
""' 1 (d-~x w(x,y) d

"2
,°.' x ax + __ I _t

((d-x m (51)

where w is a user specified volume control function. Thus, for X= Xv

the solution to this variational problem is, in some sense, the smoothest

coordinate system filling the physical region; whereas, for xo= 1 and

Xv = 0 it is some blend of a smooth coordinate system and an orthogonal

one. Of course, for Xv * 0 the character of w will have an effect on the

solution to the variational problem, so if w depends on the current state

of the simulation variables, then the coordinate system may dynamically

adapt as the simulation proceeds.

The role of the function w in controlling the adaptivity of the mesh

can be made more precise. The Euler equations for Equation 49 with xv:

are

25
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W j2 +2[(wJ) n - (WJY{J ] : 0

9w j2 + 2 x (wJ)- x(Wd) ] = 0 (52)

If we suppose that (x(y,E), y(n, )) satisfying these has been found, let

j (x,y) : x (n,E) yn(n, ) - Xn(n,E) y (n,O), and transform Equation 52

using

x
aE ax ay

+Yn
a a_

-= + aT (53)an an

then we obtain

a Cw , 2) (W 2) 0
ax (w~2 ay-(/ (54)

Thus, the Jacobian of the coordinate system defined by Equation 52 must be

proportional to w -1/2. Since the Jacobian of the coordinate system is
approximately the cell area for the mesh, cells will be smaller where w is

large, so long as A > 0.v

For xv of order unity, the terms in the Euler Equations for Equation

50 which are derived from Y act to smooth the coordinate system and reduce

the influence of the weight function. The resulting coordinate system is
thus a blend of those determined by the operators in Equation 51.

5.3 THE MATERIAL DERIVATIVE

The only terms of the physical model of Section 2 affected by the

choice of coordinate system are those involving the material derivative.
The material derivative for a quantity in Lagrangian description is

df 1
(55)dt at
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while for an Eulerian description it is

df = e - (56)
Sdt dt+v f

For the arbitrary fluid description, it is

df =a a (57)

dt - @t + ( v'vc) " V f a 7

where vc is the velocity of the coordinate system defined as the velocity

of points in physical space represented with fixed coordinates. Clearly,

the special cases Vc = _v and v- = 0 produce Equation 55 and Equation 56c c
from Equation 57. Equation 57 is derived from Equation 55 by noting that

f a (nEt) = fe (x(nEt) , y(nEt) , t) (58)

and differentiating with respect to t to obtain

af af af af
a a e + xt e + Yt e(59)

Since (xt, yt) = Vc, solving Equation 59 for afe/at and substituting the

result into Equation 55 produces Equation 57.

The quantities of which material derivatives are required in the model

include p, e, B, and V. It is crucial to the performance of the code that

these be performed in a way which conserves certain integral quantities.

The details of the spatial differencing by which that is accomplished will

be covered in Section 7. The equivalent integral statements of the differ-

ential equation

dC d (60)dt
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differenced there will be derived here.

If R(t) is a moving region of space, then

+ • ( v) 0 (61)at

implies

a

at fR(t) d faR(t) (Vs - 7) " n dA (62)

where is described in Eulerian coordinates, v is the fluid velocity, and
.5. v is the velocity of the surface. Conversely, if Equation 62 is true for

all regions R(t) then Equation 61 is a consequence.

To illustrate the equivalence of these two statements, we must param-

eterize the moving region R(t) by i(?,t)

R -(t) (63)

where x,(s,O) s, so that s = R(0). Then

IR(t)pdV = fa p(y,t) det (d-y) ds (64)

in which d-y is the Jacobian matrix
5

l .. ay.(dsy)ij- s (65)

so that det (djy is the Jacobian. From Equation 64

-.

_ af(td = vo + - (det dsy) d- (66)
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Now,

'C'

det j-) -- ( • vs) (det d-y) (67
%s

V so

fR(t ) =d : fR(t) at + V( Vs) dV (68)

Substituting v + (-V - ' for v and applying ao/at + 7-(v) = 0 yields• ", S

t fR(t) ,dV :R(t) v ( - v)0) dV (69)

An application of Stokes Theorem then produces Equation 62. Proof of the

converse uses the same algebra and the fact that

f f dV = 0 for all R (70)
SR

implies that f must be zero if it is continuous.

By applying Equation 61 repeatedly with : p, pe, p-v, and pB, it can

be shown that the system

,' ~dt - v

de d dB

-- 0 dt dt (71)

is equivalent to
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I..'.,

o-t 'R t dV I r v ) • n dA_t -~)3R(t P s )

3 e' e(_ - _d
. t R~t) edV = (t) pe( s

' -- , R pvV = a~t v -v) • n dA

at !(t), at) (Vvs v

L3
Sa-t J R(t) pBdV = aR(t) P ( vs  v) •n dA (72)

T/. 'It is clear that the first of Equations 72 is equivalent to the first of

Z' Equations 71. The second equation follows from expanding

a (Pe) + v - (Pe'v) : p + e (dt  + ov (73
at t d

;,"" The second of Equations 72 implies that the left-hand side of this is zero;

" '-'"the factor in parenthesis on the right-hand side is zero by the previous

m remark. Since p cannot be zero anywhere, the second of Equations 71

=..?..follows. The remainder follow in a similar manner.
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6. TIME DIFFERENCING

The physical model described in the previous sections is solved

numerically in arbitrary coordinates by a time-split, time-marching algor-

ithm. The physical processes which are time-split are:

Radiation Cooling
Thermal and Equilibrium Radiation Diffusion
Resistive Diffusion

0 Lagrangian Hydrodynamics
Coordinate System Motion and Convective Transport

The resistive diffusion and the Lagrangian hydrodynamics are done with

implicit time differencing, but the remainder are done with explicit dif-

ferencing. The time-step is selected to maintain the stability of the

calculation.

6.1 TIME-SPLITTING

Often known as fractional time-stepping, time-splitting is an approach

to time advancing evolution equations. It consists of the sequential

application of separate portions of the system of equations, rather than

simultaneous application of the entire set. Thus, the conditions or state

which result from the application of the first subset of equations or terms

are used in the second, to compute the changes in state dictated by that

piece or pieces of the governing physical model. In MACH2, for example,

the magnetic field which results from the action of the resistive diffusion

for the current time-step is used for the initial state for the action of

the Lagrangian hydrodynamics for the same time-step. The inaccuracy of

this time differencing can, of course, be made small by making the time-

step sufficiently small. Later subsections of this section will describe

precisely how the various equations, and in fact, even terms of equations

are time-split.
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6.2 EXPLICIT VERSUS IMPLICIT TIME DIFFERENCING

When an evolution equation of the form

L,= F() (74)
3t

is solved numerically, the values of the dependent variables will only be

computed at discrete time t,, t2, ...t .... For a finite difference code,

the dependent variable X is a vector with many components, one for each

physical variable of interest (B r , B , Bz, z , u, v, w , x, y, e, and others

as well in the present case) at each spatial location of interest i.e., at

each grid point. If we use xn to stand for X(tn) one way to

difference Equation 74 is

(Xn+l - Xn)/dt = F(X) (75)

This is known as explicit time differencing, because the new time value

Xn+1 is given explicitly as a function of the old time value Xn by

Xn+1 : Xn + dt Frxn) (76)

The iterative procedure described by the spatially differenced form of this

equation can be unstable. That is, it may describe non-physical divergence

from physically reasonable behavior. This certainly will happen if the

linear part of Equation 76 amplifies disturbances with characteristic

lengths of variation as small as the spatial descretization dx. This

behavior is associated with the existence of eigenvalues of the lineari-

zation of Equation 76 which have magnitude greater than 1. Often the

requirement that these eigenvalues be less than 1 in magnitude can be main-

tained by keeping dt small enough. The existence of such a stability limit

on the time step is typical of explicit time differencing; implicit time

differencing can be free of such limits.
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* Fully implicit time differencing for Equation 54 is given by

Xn+1 - Xn)/dt = F(Xn+l) (77)

and is so-called because n+1is determined implicitly from Xn by the rela-

tion

=n+l - dt F(Xn =  (78)
0

This must be solved for X n+1 to determine the new time values. In any

interesting case, each equation represented by Equation 78 depends on many

of the components of X n+1' of which there may be hundreds. Numerical

solution of such systems is typically very similar to the solution of the

steady-state problem (derived from Equation 77 by taking the limit dt + ®)

F[X×) = 0 (79)

If the partial differential equations represented by Equation 74 are para-

bolic, such as the equation of thermal diffusion, then the steady-state

problem will be elliptic, as will the time advance problem, Equation 77.

Techniques for solving elliptic problems numerically such as successive
over-relaxation, alternating direction implicit methods, multigrid methods,

and preconditioned conjugate gradient methods can all be used. Since the

operator F is often nonlinear, these methods all must be modified to
include same iterative methods for the solution of nonlinear equations,

usually similar to Newton's method.

The relationship of implicit or explicit time differencing to permis-

sible time-step is determined by stability considerations in a very general

framework. In either case, we must consider the linear part of the iter-

ation operator L such that

n+1 n (80)
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For explicit iteration we have L = L e= I + dt d F from Equation 76; the
e

implicit iteration, Equation 78, implies L = Le3 (I -dt d F)-1 . Thus, if

we write .(M! for the spectrum of an operator M, we have the spectral map-

pings

A ef = 1 + dt Ard F) (81)

and

L . (82)i) 1 - dt AdF)82
x

For parabolic Equations 74, A(d F) C LHP :{z C Re(Z) < 01; further

if d F is taken as referring to the discretized F, the AMd F) is bounded
x x

since it has only finitely many members. Then Equation 66a implies that if

dt ';s small enough, A(Le) < S(0,1). Here S(z° . r) = {ze C ZZo < rI.

This is precisely the condition required for stability of the iteration,

since no eigenvectors exist which are amplified by the iteration. However,

it is clear that if dt is too large A(Le) will extend beyond S(0,I) and

same disturbances will be amplified. Thus, explicit time-stepping requires

a time-step control.

The case of implicit iteration is more interesting: Equation 82 shows

that A(d XF) c LHP => c(Li) z S(0,1) regardless of the spectral radius of

d F or of dt. This is because 1/(1-z), the spectral function, maps LHPx
into S(1/2,1/2) c S(0,1). Hence, the iteration is stable at all time-

steps, and no time-step control is required by stability considerations.

That this argument should be possible without assuming d F to have
x

constant coefficients is truly remarkable. It is probably possible to

extend it to non-parabol' operators F as well.

In addition to describing the time-splitting, the remainder of Section

6 will describe the time dependence of the time advance equations used for

each physical process modeled by the code to point out which are explicit
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and qhich are not. Details of -e iterative numerical solutions of those

that are imolicit will be reserved to Section 7.

For purposes of reference, we will think of the various stages inter-

mediate to the major time-split processes as being at different times. Tne

times will be referred to as tI, tR, tT, D ) tH, and tF* The time at the

initiation of each cycle is tI; after the radiation cooling, tR; after

thermal diffusion, tT; after magnetic diffusion, t,; after the Lagran-1a3

hydrodynamics, tH; and after the convective flux which finishes the cy'c'e,

t., which is the same as tI + dt.

Figure 7 shows schematically which major physical processes of tie

main computational cycle advance each of the fundamental variables retween

those times. From it, one can see that density is only changed hy the con-

vective transport, while the internal energy is changed by all of the mazor

processes in the cycle.

In the subsections that follow, a variable superscripted by I, R, T,

D, H, or F is to be understood as having remained unchanged since t, tR,
_J

tT, tD, tH1 or tF respectively. Thus, v will mean the hydrodynamic

velocity after the current time-step's advance by the hydromagnetic pro-

cess, and before that of the convective process.

Since our object here is to describe the 'ime differencing, we will

use the continuous vector field differentiation symbols to write the

equations. The details of the spatial discretization and differencing will

he discussed in Section 7.

6.3 RADIATION COOLING

Radiation cooling is the first physical process in the time split com-

p'utational cycle. It advances the internal energy from time tI to tR by

R Y 1 14
e e + dt (T (83)
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(RADIATION COOLING)
"- .tR

(THERMAL DIFFUSION)

(MAGNETIC DIFFUSION)

* ~(LAGRANGIAN HYDRO) II
tH

(CONVECTIVE DERIVATIVE)
-. ,,g.. t F  t I  + dt ..

AMRC-R-874

.2-

Figure 7. The time-split advance of the fundamental variables.
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thus it is explicitly time differenced. No time step control is used, how-

ever. To prevent the coding from producing negative energies, the cooling

rate is limited so that the no more than 90 percent of the internal energy

can he removed in one time-step.

6.4 THERMAL DIFFUSION

The thermal diffusion is implicitly time differenced. The computation

,egins with the determination of a local time centering parameter B. It is

computed using

3~i mrain if C T > 7 min +

3= 2CT -3 (84)

B if CT < 1 3max +

W," where

Ilk ldt
C T C (dL) 2 (85)

2

is the thermal Courant number, 3max > B are control parameters in the

range [0,1], and y is a control parameter greater than 1.

* The temperature is then advanced from tI to t T by iteratively solving

r4r
TT TI  dt I + (1 - 8) (86)T T V - k -V T )(TT=8r I CI  e

ii o v

""T. 1 . and 6 0. the differencing is fullyr_''for T Thus, for 8 max  min •

explicit in cells where C T < 0.75/y and fully implicit where C T > 1.25/y.
rFor C T between these values, the differencing is of mixed type which,

nonetheless, requires iteration. The conductivity tensor is held fixed
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during the iteration, even though it may be a strong function of temper-

ature. The iteration is carried out by a multigrid procedure which is

lescib'-ed in detail in Section 10. After TTconverges to some desired

accuracy, the internal energy ismodified explicitly using

T eI T - T Ij()
e e +(T T(7

6.5 mAGNETIC DIFFUSION

Tne third physical process effected in the main cycle is that of

resistive diffusion of the magnetic field. This is the second of three

processes in the code which are implicitly time differenced. This compu-

tation begins with the determination of a local time centering parameter,

*again using Equation 84 but with C T replaced by CM, the magnetic diffusion

Courant number, given by

CM= ndt (8
CM=(dL) 2(8

The magnetic field is then advanced from t I to t D by iteratively

solving

for 8B. Thus, for 6ma 1. and Smn=0. the differencing is fully

max," 'mno

explicit in cells where CM is less than 0.75/y and fully implicit where it

uis greater than 1.25/y. For values in between the differencing is of a

i

mixed type which, nonetheless, requires iteration. Both the classical and

anomalous resistivity remain fixed during the iteration. After the solu-

tion is obtained to some desired accuracy, the joule heating is applied to

the fluid using

D0= T - 1_TT  I (90)
e = e + dt TB )B ( V B (90)
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6.6 LAGRANGIAN HYDRODYNAMICS

This is the other major physical process of the main cycle which is

implicitly time differenced. The computation begins by determining the

values of the components of the artificial viscosity tensor 7 from values

of the velocity and density at time tI . Details of this are reserved for

Section 7. The velocity, density, and pressure are then advanced from time

tI to time tH' and the magnetic field from time tD to time tH by itera-

tively solving

-H -I It
v =v -- 7 .S

" PH 1 BH BH 5 + BH  H + 6 I a, BE{1,2,31
2 y y as B a

H I H --H
- dt , 7 • v

P H =ee P/ Pls +rP (HP

' s

* Here, a is the square of the adiabatic sound speed. After these are

approximately solved to a satisfactory tolerance, the internal energy is

advanced to tH by the appropriate pressure heating or cooling using

e H  e D + d _ pH 6 + crl ) H

7e H as ) E , BE{1,2}

p,

I' v H 3VH 3V H
rr

a3 3vH avH avH

Z (92)
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6.7 CONVECTIVE TRANSPORT

All that remains of the full model are the terms due to material

derivative, i.e.,

d e + - V a (- Vc a 0 (93)

for ¢ : p, e, v, B. These are the same as Equations 71 in Section 5,

except for the substitution of

+- 7 p-) = 0 (94)

• at

for

7t + v - 7p = 0 (95)

Since Equations 71 are shown in Section 5 to be equivalent to Equations 72,

they are time differenced instead. The additional p V • v of Equation 94

is accounted for by ignoring pH and using p in a single place, since

Equation 91 shows that to be precisely the difference between them. The

time differenced forms are

FHI-H --q

SRF Fdv = fRI pldV + dt a Fp (-v v) .v n dA

FFHH- -H
fR F P e dV = f R p e dV + dt f F p e (vc  v ) n dA

R R F

RFpvdV fI pv'dV + dt f pv (V - v)7 dA

R R RF  c

Fr dV I P1WHdv +dtf F (Vc (96
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where vc is tie velocity of the coordinate system, and RF and R
I are the

region at time to tF and t, respectively.
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7. SPATIAL DISCRETIZATION, CENTERING, AND DIFFERENCING

There is a not a lot of a detailed numerical analytical nature, such

as estimates of accuracy or stability, that requires discussion or that

will be illuminating. However, the basis for the numerical analysis must

be detailed. This includes the spatial discretization, the centering of

the discretized physical variables, and the spatial differencing of all

operators appearing in the equations which describe the physical processes

given in Section 6. The boundary condition implementation technique and

the iterative solution procedures for the implicitly time-stepped processes

will also be described here.

7.1 SPATIAL DISCRETIZATION

The description of the class of admissible geometries is the starting

point for the discretization of the domain. The problem domain, a block-

like complex, is the image of a block complex under the action of a dif-

feomorphism. If the blocks of that complex are discretized in the most

obvious way, a discretization of the block-like complex results from the

4P.- diffeomorphism. So B 4b is replaced with the collection of integer grid-

points it contains

"1  = 10,j) e Z I I< < 1 < j < Jl}, 1 ,...,L (97)

Since the location of the domain of the diffeomorphism is immaterial, each

block is taken to have lower-left corner at (1,I). As the continuous
coordinate system is described by the diffeomorphisms

iv(Xl(n, &, t) , Yl(n, , t)), 1 = 1,...,L (98)

"/

as in Section 4, then the discrete coordinate system is described by
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ji i< i < I I < j <a 1 = 1....L) (99)

a finite collection, indexed by 1, of two dimensional arrays of points in

the computational plane. These arrays of points are referred to as the

grid, or the mesh, in which context they are thought of as being connected 4

to their nearest neighbors which have the same value of i, or of j, as

shown in Figure 3. The four points

1 1 1 1 4
(, j + i i, j + 1) + 1, .j + i' + 1, j + 1) (100)

which lie in general position, and the four lines of constant i or constant

j which connect them form the cell indexed by (i,j). The location

C ~ ' c j ) :X j 4 " [ j )  +  ( X ' + ] j Y + J j )

+ (X 1  , ylij + I, i , j + )

+ ( XI  is Yv(01
i + 1, j + 1 i + 1, j + I)](01)

is called the cell center, and points of the arrays are known as vertices.

Such a mesh is often referred to as an arbitrary quadrilateral mesh, for

obvious reasons.

ON

All of the variables in the code which have spatial dependence are
stored as functions of 1 and (i,j), so that the density, for example, is

known as a function of (x,y) only through the parametric description given

by Equation 99 and the collection of arrays

{oij} (102)
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Figure 8. Computational grid indexing and corner numbering.
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7.2 SPATIAL CENTERING

For the purpose of deriving difference formulas, most spatially vary-

ing quantities are thought of as having values located at either cell

centers or vertices. The fundamental variables of the code are thus split

into two classes:

., Vertex Centered -- position, velocity

Cell Centered -- density, internal energy, magnetic field

There are many other space dependent qi-antities derived from these, and

*. they are usually quite easily identi : as belonging to one or the other

class by the following simple rule: difference operators map each class to

* the other. Thus, the current density is a vertex centered quantity, since

J = V -. When it is necessary to call attention to their centering, cell

quantities will be indicated by a superscript "c", and vertex quantities by

a superscript "v".

Unfortunately, a third class of variable exists: the edge centered

quantity. The convective fluxes of mass, momentum, internal energy, and

magnetic field fall into this class; they are all derived quantities. When

it necessary to call attention to such a quantity's centering it will be

superscripted with an "e".

7.3 FINITE VOLUME DIFFERENCING

In general, the finite volume approach is used to derive the differ-

encing in the code. This approach can best be understood by considering

the example of 7-x (). One form of Stokes Theorem that involves this

operator is

TR -  F dV R x F dA (103)
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Here R is region of 3-space and aR is its bounding surface. If R is taken

to be the small, discrete volume in 3-space described by a single cell in

the computational grid, then Equation 103 becomes

( l FidV I (n dA (104)
13 13 faces ij

where it has been assumed that 7- x Fand n x F are uniform over the volume

and its faces, respectively. The quantity dV. here is the cell volume

and d1)j, the face area. If values for n F are specified for each of

the faces of the cell, then Equation 104 can be used to define x F. The

differences are hidden in the direction of the normals in the sum on the

right hand side; the normal on one face is opposed in sense by the normal

on the opposite face. In what follows, the indices ( ) will be omitted.
ij

The principal advantage of this scheme of differencing is that conser-

vation laws written in terms of the quantities in the vector integral theo-

rems are usually well respected by the differencing. In fact, for the

example above, all that is required to insure that Equation 104 is satis-

fied exactly for R a region composed entirely of whole cells is that the

0quantity n x 7 be computed the same way, except for its sign, for a par-

ticular face regardless of the cell with which it is associated. This is

worthy of more explication. First note that

I' (v x F) dV = (n x F) dA (105)
cells cells faces

Since, by the above assumption, two terms (n x F) dA appear within the

Cdouble sum for each cell interface, each with opposing sign, all but the
contributions from the exterior faces must cancel. Hence it is true,

exactly, without approximation, that

x Z (v F) dV I (n x F) dA (106)
cells exterior

faces
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This is the best possible statement of Equation 103 for the discretized

data available.

There are two subtleties in the application of the finite volume dif-

ferencing to any particular case, however. The first is due to the pos-

sible cylindrical symmetry. The second is due to the different centering

types of the data. There is also a bit of unpleasantry: the requirement

to specify (n x F) dA precisely in each case. Each of these shall be dealt

with in turn.

In cylindrical symmetry, though all vector components satisfy

F : 0 (107)

the standard basis (r, a, z) satisfies

'pr

- (108)

If the three-dimensional discrete volume associated with a two-dimensional

% cell in (r,z) space is assumed to extend a small increment do in the 6

direction, as shown in Figure 9, then Equation 104 becomes

__ --..
7xF V do (a(a+de) o (9)xF da

O.")

+ nx F rdl} (109)
cell

edges
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since F is independent of 9. Here da is the area of the cell in the com-

putational plane, and the sum extends over the four faces obtained by

extending the cell edges normal to the computational plane by the increment

rde. Taking the limit as do goes to zero and using Equation 108 we obtain

1 -

7 x F- dV {-r x F da + T n X F rdl} (110)
Ed3 cell

edges

Thus the difference formula for - F contains terms in cylindrical sym-

metry that are absent in planar symmetry. In the code planar symmetry is

easily implemented by setting the quantity da to zero and the radius r in

the summation in Equation 110 to one.

It might seem that all occurrences of the curl operator could be dif-

ferenced alike; sadly, this is not the case. There are two distinct dif-

ference forms for it in use in the code:

*. - cell centered curl of vertex quantity
vertex curl of a cell centered quantity

and this problem extends to other operators as well. In large measure the

cases differ only in the choice of the volume over which the technique is

applied. The finite volume in Figure 9 is the one appropriate for comput-

ing cell centered differences of vertex centered quantities. Figure 10

* shows a region in the computational plane which, when extended by rde in

the e direction, becomes the finite volume that is used to compute vertex

centered differences of cell centered quantities. The region consists of

four parallelograms formed by the vertex (i,j) and the midpoints of

adjacent pairs of edges leaving it. Since this is the most common form of

differencing in the code, some geometric quantities associated with this

finite volume are computed once per cycle and saved for reuse to avoid

recomputat ion.

50

2"....



I

4'

CELL (i,j)

VERTEX FINITE VOLUME (i,j)

d, MIDPOINT OF CELL EDGE

i" VERTEX (i,j)

AMRC-R-874

Figure 10. Projection on computational plane of finite volume for vertex
centered differences of cell centered quantities.
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Figure 11. Cell corner area-weighted normals for vertex centered differencing
of cell centered data.
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7.4 STORED GEOMETRIC COEFFICIENTS

Those geometric quantities are most easily understood in the context

of the derivation of the vertex centered gradient of some cell centered

scalar quantity p. Applying

R dV R * n dA (111

where n is an outward pointing vector field, to the finite volume described

above yields

V _ c cc dA"' (V v  
I -  da + n (112)

dV adjacent edges d(de) cells

Here the first sum is over the four shaded parallelograms and the second is

over the eight edges of the shaded figure of Figure 10.

The second sum is collapsed to four terms and converted to a sum over

adjacent cells by assuming that within each cell 0 is constant. The two

terms

,'. + n - A (113)

t s

* within the sum which derive from a single cell, shown in Figure 11, are

replaced with the single term

rn dA (114)

where the subscripts t, s, and d stand for top, side, and diagonal as

illustrated in the figure. This is equivalent to assuming
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dA -A dA
dn dA)t + n d = d 6 d115)

which is not precisely true in cylindrical symmetry, since it ignores the

variation in dA with r within the cell. This does not lead to disastrous

results since we are using the finite volume approach. The boundary

quantities need only be estimated, not computed exactly, since, so long as

they are all computed consistantly, the integral conservation laws remain

valid. The same radius is used for each of the four directed vertex face

areas in one cell; that radius is the centroid of the cell area. These

areas are thus given by

kFA = rc R dTk k = 1,...,4 (116)

where rc represents the cell centroid, R is a rotation by w/2 radians, dT

is the diagonal of the corner parallelogram as indicated in Figure 11 and

the corner index k is as shown in Figures 8 and 11.

The four vector quantities in Equation 116, and the quantity

dV v (117)

referred to as the vertex volume, and the areas dak for k = 1,...,4 of

parallelograms such as the one in Figure 11, completely specify the vertex

differences of cell centered quantities. They are computed once per cycle

and stored for reuse. The corner areas da and the directed vertex areas
S CdAC

rn T-) are cell quantities, as indicated by the superscript c, but are

each associated with a particular vertex of the cell, and are numbered as

the vertices are numbered in Figure 8. In addition to these, the four

volumes
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(V rc d a  k 1, 4 (118)
d k kk

referred to as the corner volumes, and the reciprocal cell volume

c ( dV c (119)

d-c k 1 )
are stored for use in other differencing and averaging. Note that the

vertex volume is defined as

dV v dV c (120)
- ~c(de1kc)
adjacent
cells

where the notation k(c) indicates that the appropriate corner number is to

be chosen within each cell so that the corner referred to is adjacent to

the vertex at which the volume is being computed. One advantage of comput-

ing these geometric quantities in only one place in the code is that they

can all be easily changed in a consistent way if that should be necessary.

That has been done on at least one occasion.

With the above definitions, the difference form of the vertex centered

gradient of a cell centered scalar quantity * may be written as

-- c [-; da (c) + (n dA c (121)v' ¢V iadjacent kc F)k(

cells

55/56

6.



8. DIFFERENCE OPERATORS BY PHYSICAL PROCESS

The remainder of this section will follow the organization of the main

computational cycle, dealing with each type of differencing for each oper-

ator where it first makes an appearance. The precise specification of the

houndary quantities for non-vertex-centered difference operators will also

he covered along the way, since they depend on the centering type of the

data to which the operator applies.

8.1 RADIATION COOLING

'p. There is no differential operator in Equation 83 which governs the

radiation cooling model. That is, spatial derivatives play no role in

energy loss by free-free emission.

8.2 THERMAL DIFFUSION

There are two differential operators, the divergence and the gradient,

in the thermal diffusion model of Equation 86. The divergence must produce

a cell centered quantity, the thermal heating rate, and the gradient is of

the temperature, a cell centered quantity. The centering of the gradient

is arbitrary, so it may be taken to be a vertex quantity.

Since the gradient of the temperature is a vertex difference of a cell

I centered quantity, it is computed using Equation 121 with € : T and the

geometric quantities defined above. The thermal flux, also a vertex

quantity, is computed by multiplying by the effective thermal conductivity,

so that

'= r:k T (122)
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The divergence of the flux is then computed to determine the cell

centered thermal heating rate. Because the thermal flux is a vertex

centered quantity and the thermal heating rate is cell centered, the geo-

metric quantities do not apply exactly as derived. However, the boundary

integral areas for vertex centered differences are related to those for

cell centered differences. This relationship is made clear in Figure 12.

The assumption there is that the areas of the surfaces associated with the

cell edges do not vary with radius. To correct for this error, additional

terms proportional to the cell corner areas da (v) are included in the dif-

ference formula. Thus, the divergence of thermal flux is computed using

(,.-c 3K dac ndC F (123)
"• c k(v)(nde) I-*)k~

• vertices k(v)

8.3 MAGNETIC DIFFUSION

The only differential operator in Equation 89, which governs diffusion

of magnetic field, is the curl. However, two centering types are required.

As mentioned above, since B is cell centered, T is taken to be vertex

centered. Hence, the difference operator in

JVx B (124)

is a vertex centered difference of a cell centered quantity, while that in

-= V n -(125)

is a cell centered difference of vertex data.

The derivation of the difference formula for the cell centered curl of

a vertex centered quantity was begun above, in the introductory discussion

on finite volume differencing. All that remains to complete the derivation

is to specify the quantities on the right hand side of Equation 110,

, repeated here with E : n J substitued for F
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Figure 12. Equivalence of cell-to-vertex and vertex-to-cell area weighted
normal s.
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x E d da + ncl E rdl (125). ,-- )cel I
'da- "edges

for easy reference. The volume on the right hand side needs to be the

volume of the cell per radian, and hence the reciprocal cell volume, one of

the saved geometric quantities, is used there. Since E-is vertex centered,

the first term in the braces must be expanded into an average over the four

vertices of the cell

"' -E a ) -v ( k ) a( 1 7
- .' . r x Eda c = r x k da (127)

- vertices

. The dac here are the cell corner areas, which are also among the previously
k

defined geometric quantities, and the notation v(k) indicates that the

indices of E are chosen to match the corner index k as in Figure 8.

The terms of the sum which remains are first rearranged as

r) e  7dl )e (128)

The first factor is defined by
* 5-.

... i ri[-e nll I , rI I,-e, :-+ r E r -r E (129)

where, as before, the primed and unprimed quantities refer to the two

vertices which are the ends of the appropriate edge. The second factor is

taken to be

Se
"nd1 e : RdT (130)

* in which R is the I/2 rotation operator, and dT is the edge, oriented so

that the cell boundary is traversed counterclockwise.
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The vertex centered curl of cell centered data is derived using the
finite volume described by Figure 10. It is given by

(" x v 1 v - d A C 1

rdV adjacent 
(c) n dek(c)

I de d) cells

where all the geometric quantities have already been defined.

S q8.4 LAGRANGIAN HYDRODYNAMICS

Here the differential operators in the equations of advance are the

divergence and the covariant derivative, that is

V 3 and ( ).•*-( ) (132)

The divergence is required in two centering types, while the covariant

derivative must produce a cell centered result from vertex centered data.

First, the momentum equation requires a vertex centered divergence of

a cell centered tensor of rank two. This difference formula can thus be

written in terms of the saved geometric quantities. The form is

v 1 dA c
SdV) _ [Sor "  See r) da (c) + n -e)k(c) S](133).- dV vadjacent

* cells

', which differs from Equation 131 by the substitution of the cross product

for the dot product, and since F is a tensor instead of a vector.

The second occurrence of the divergence here is in the terms repre-

senting the effects of the velocity field on the magnetic field and mass
density. Both of these require a cell centered divergence of a vertex

centered quantity, the velocity. The divergence of the velocity is done

precisely the same as the divergence in the thermal transport, that is,
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1 1A c -v
7 = <' -r la -V (134)

v .dV vertices k(v) d k( )

-" The covariant derivative required is 7 7v, and by a similar argument

to that given above, is given by

-..: -• 1'i I -;Lc (V v) c. - dAfr
B vC-etcs -

v  dak() - ,

,,dV vertices
'5e ) (135)

8.5 CONVECTIVE TRANSPORT
.

m '

,* The integral statements of the convective process, Equations 96 of

Section 6, can be differenced directly. Application of the first of those

'". integrals, which governs the flux of mass, to a single cell produces

F~dVF c dV c H - -H --F dA F
p. + dt pHe Cc- v * n -d (136)

edges

The fractional timesteps of the cell volumes have to be displayed since the

grid movement step is combined with the convective step. No terms due to w

appear here since the density is independent of e. When the convection of

the vector quantities B and v is considered below, the turning of the basis

vectors will require treatment of such terms. The edge quantities

dVe c " - n 1 d t (137)
de

which are the rate of flux of fluid volume across the edges, are taken to

he

W % 1 -H 4

#A L [ Vc v r, + (v- - v r r2] RdT (138)
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r = 2r + r' = 1 'r + 2r') (139)

The specification of the edge value of the density determines the

order of accuracy and the stability of the difference scheme for its trans-

port. In general, techniques for selecting the edge value are based on

donor cell averaging, which is of first order accuracy, and linear interpo-
0 lation, which is of second order. The order of accuracy referred to here

is that relevant to smooth functions, i.e., those for which the relative

change from cell to cell is small. In such a circumstance second order

differencing is clearly superior. However, if the relative cell to cell

change is large, both schemes produce errors. Second order differencing

tends to introduce unphysical behavior in the solution while first order

differencing tends to spread short scale length phenomena. Since neither

scheme can support scale lengths shorter than the mesh size, it is usually

iV felt that first order differencing is superior in these regions. Thus

these schemes are often combined in some way, in an effort to increase

(iccuracy where the solution is smooth and decrease unphysical behavior

where it is not.

Flux corrected transport, described by Zalesak (Ref. 9), is one

approach to this averaging. Another approach is to form a combination of

the two schemes, in effect, an average of the averages. If the weights are

chosen adaptively, as some function of the computed solution, the combined

difference scheme can be made second order accurate where the solution is

smooth and first order where it is not. This is the approach followed by

Brackbill in MOQUI, and adopted here. Letting the superscripts i and o

stand for inside and outside, the edge value of the density is given by

He 1 + a Hi 1 - Ho
P + -6 (140)

• . 63



ON

where the function a that determines the order of the differencing is

dVe+ (I- s) s (141)

Here, Ve is the edge volume, dV e is the edge volume flux given in Equation
ee

137, and s sign (dV ). Where 3 1 1, the edge density p is determined by
i 0 i

linear interpolation between p and p . Where 3 = 0, it is either p or
0 depending only on whether the volume flux is into or out of the cell in

question, and hence the differencing will be donor cell. For values of B

in (0,1) the difference scheme is a linear combination of the two. The

control parameter B is determined by

m = main , (142)

The function

= 1 y (h(g) + h(go)) 1,143)

is a measure of the local gradient of the relative velocity of the grid and

* -the fluid, with h as shown in Figure 12, and g computed as

%,-

d V(c**)I (144)

Ivc

where d is measure of the local grid spacing. The choice

9max-= 0.1 h = 0.0 (145)" , max min

for the parameters of Figure 13 would cause donor cell differencing to he

used wherever the vertex to vertex variation of the relative velocity of

the grid and fluid exceeds 10 percent. Of course, the choice
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Figure 13. Convective flux differencing control function.
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hi'1 - .0 (146 )

forces donor cell differencing to be used everywhere. This is the default

choice, 3nd the only one which has ever been successfully used for real

simulations.

-i The other control function in Equation 142 is a measure of the density

gradient. It is computed as

+ FS) (1 + + s sP 0 ii

)4-(1-s)(147)
• ( - S) +l s ) + (i - s ) (

where s = sign(p /p i 
- 1 , The reader is invited to show that this pro-

duces I if the velocity of the grid relative to the fluid is toward larger

density, and osmall/olarge if that velocity is toward smaller density. The
smalllatter value has the effect of limiting the edge density to (3/2) p

when the ratio of the densities is very small and the grid is moving into

the lower density fluid, rather than the allowing the large value that

linear interpolation between p sm and would produce.

8.5.1 Homogeneity of the Transport Scheme--It is desirable for the

mass transport process to have the following property:

Homogeneity: For 0 fluid velocity and uniform density, and for any
grid velocity, the density after the transport step should be the same
as the density before.

SD.

Letting o be the value of the uniform density, it is clear from Equation
14 t 0 

oHe140 that 0 o . Equations 136 and 137 then imply that

F TV-d c e dV '4
o 'de + ( dV e  / T (148)

edges
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- Hence o F if and only if

e v VF c IcddV I:'; dVe = ,d-V- d- p- -149)

V edges

that is, if only if the estimates of volume flux due to coordinate system

motion exactly account for the changes in cell volume due to grid motion.

Unfortunately, the volume flux estimates given by the expressions above do

not satisfy this. The errors are of two kinds. First, the fluxes of

volume to the diagonal neighbor cells, are not included in the estimates.

Second, even when the grid moves so that the diagonal fluxes are zero, the

edge volume flux estimates are in error due to incorrect radius weighting

4 and improper time centering. The complexity of making the volume fluxes

exact is deemed to be a greater penalty than the compensation that would

resu 1 t.

.5.2 Internal Energy Transport--The other transport equations of

Equation 96 can he made homogeneous by the use of mass flux based trans-

port. For example, consider the spatially discretized version of the

second of Equations 96, which governs energy transport,

F F r dvF~c I H dV c He He H dAF
oe de P e (Te) + dt Z p e (- c v n n d(

edges

If the cell mass m is defined as

mC  dV

II PV (151)

and the edge mass flux dme as

e He --H F dA F  He e
dm =D Fc v )•n - dt p dV 152)

, 67

VN ,-%-. -"

" ' im' ",'.-': w' W : % ? .L! , 'r" : wV , 
, ' " " '-. " , .'-,



then Equation 150 can be written as

e F Fc H Ic e e (153"."e m' =e m + 7 dme  13

edges

These edge mass fluxes are precisely the same as those computed during the

mass transport phase. To emphasize this fact note that Equation 136 can be

written

Fc Ic em =M dm (154)
edges

Thus the mass fluxes computed there are saved and reused during the trans-

0 port of all other quantities. The edge value of the internal energy is

computed by the same scheme as that for the density. In fact, the calcu-

lation in Equations 140 through 147 is repeated exactly with the exception

of the substitution of e for p throughout. Now, if e I eo, then, just as

for p above, ee= e . In this case Equation 153 becomes

F Ic e Fc

e = e0 {m + j dm e } / m (155)
edges

F
which, by Equation 154, implies e : e0

8.5.3 Monotonicity of the Transport Scheme--Another significant

property for a transport scheme is monotonicity. A scheme is monotonic if

the transport of a quantity from one cell to a neighbor, in the absence of

any other transport, results in the final densities of that quantity in

those cells lying between the initial densities, and in the original order.

The mass flux based transport scheme described above is monotonic if donor

cell differencing is used, though distinctly non-monotonic if any linear

interpolation is used. This will demonstrated for the transport of

internal energy. The superscripts + and - be used to designate quantities

belonging to the cells to which mass is added and from which mass is
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removed, respectively. With this notation, donor cell differencing corre-

sponds to the choice ee = eH. For the case of mass transport toward

higher energy, the monotonicity property is easily stated as

,H- H+ H- eF- eF+ H+
e e He <e <e < e (156)

Since there is mass flux across only one edge Equation 155 becomes

:" F- I H c e
e- 1 mHtC e idmi) (157)

.4 m

Because

*,' eH - < e < e (158)

it is clear that

'H- H eH -  d <eF- dH -

e -(eH+ e dm Fc <d (159)

e -

with equality on the right only if ee eH-. The remainder of the ine-

qualities required to prove monotonicity for donor cell differencing follow

in an analogous fashion. That strict inequality on the left in Equation

158 implies strict inequality on the right of Equation 159 shows that non-

donor cell differencing produces non-monotonicity. When a transport scheme

is non-monotonic, a propagating front separating two ostensibly uniform

states will have excursions above and or below the limit values. Such an

excursion is particularly troublesome when it causes a sign change in the

energy! It is for this reason that donor cell differencing is used almost

exclusively on real problems.

8.5.4 Cylindrical Effects from Convective Derivatives--The last two

integrals of Equation 96, having vector integrands, generate terms pro-

portional to w - w . Of course, the coordinate system does not move in the
SC H

e direction, i.e., wc = 0, and thus these terms are proportional to w

., Consider v * ?W in cylindrical symmetry
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v Fu) + +e Fr + F z + F
)r + v r (Fr

z) (160)_u - v az + ---2 (Frr z + Fe

Since the coordinate functions Fr, F , and F are independent of e by the

symmetry assumption, only the basis vectors contribute to the O derivative

term and thus

v. F :(u-+v z) F++ v(Fr F (161)

For F = v, these terms are responsible for conservation of angular momentum

and centripetal acceleration, while for T B , they account for the turn-

ing of trapped field lines due to fluid rotation. They seem more appropri-

ately included with the Lagrangian hydrodynamics, and appear there in

explicit form. These terms are omitted from the difference formulas in the

convective processes.

8.5.5 Magnetic Flux Transport--The difference form for the fourth of

Equations 96, which governs the transport of magnetic field, is thus

written

B = :{mlC BH + T e dme} / mCF (162)
* edges

Remember that the cell mass appears here to remove the effect of the

divergence of the fluid velocity which is properly included in the differ-

. ence equations of the Lagrangian hydrodynamics. The edge value qe is given

by Equations 140 and 141 with p replaced by T and 6 = av of Equation 143.

8.5.6 Momentum Transport--The transport of momentum, described by the

third of Equations 96, differs from the other three transport processes

described above because the velocities, which play the role of densities,

are vertex rather than cell quantities. One possibility is to form ind
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transport the cell centered momentum using the cell mass and the velocity

averaged from the four vertices, and then reform the vertex velocity after

the transport step. That is very diffusive, since it transfers momentum

across a cell even in the absence of mass flux. Brackbill's approach in

MOQUI was to use a separate vertex control volume similar to that of Figure

8, and to transfer momentum on the basis of the mass fluxes between those

volumes. Those difference equations suffered from lack of the homogeneity,

and hence a grid moving through a uniform velocity field introduced non-

uniformity. The problem was caused by the different mass fluxes used for

mass and momentum transport.

It is possible to avoid both of these problems at the expense of some

increased computational effort and additional complexity. The scheme

req'uired is baseo on the transport of four cell/vertex momenta for each

component of the velocity. For each vertex indexed by k = 1,...,4 those

momenta are given by

-c = mc v-HV(k) (163)

The flux step

-- Fc 41 c 4He e(14
Pk =Pk + v dm(14

edges

uses exactly the same mass fluxes as for the transport of mass. After the

flux step is performed the new vertex mass is computed from

mFv Fc (165)
adjacent

cells

*Then the new vertex momentum

".V : k(c) (166)
-fv1adjacent

cells
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is obtained, and from it and the vertex mass, the new vertex velocity is

obtained by

-Fv = ev/vF (167)

In the cylindrical case, the e velocity is first replaced by
-.

-F Hc
r uCdt)w (168)

and divided by rF after Equation 167 is performed.

This scheme can easily be shown to conserve total momentum exactly.

The precise statement which can be proven is

p- v_ + 1 dm e (169)

all all exterior k=1
vertices vertices edges

That is, the change in total momentum is caused solely by fluxes through

the problem boundaries. Furthermore, when there is no mass flux, there is

no change in the velocity.

8.5.7 Energy Conservation of the Transport Scheme--The total energy

0 is not conserved by the transport scheme described above. The error occurs

hecause neither magnetic energy nor kinetic energy is conserved exactly.

The change in kinetic energy due to the transport scheme can be estimated

by considering the transport of mass and momentum due to the relative

motion of the grid and fluid at a single vertex. Figure 14 shows a uniform
rectangular grid near a central vertex, and a new location for that vertex

and its associated edges. The mass fluxes, dm, which this grid motion

causes are also shown; the cell mass m is the same in all cells. The

velocity v is assumed directed vertically downward at all vertices. This
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velocity is taken to be constant along the horizontal grid lines, but a
constant ratio Y is assumied between velocities at vertices connected by a
vertical edge. The ratio is taken in such a way that if the velocity

decreases in the direction of the mass flux shown in the figure, then

> 1. The motion of this single vertex changes the momentum of all

Svertices shown in the figure. Assuming donor cell averaging, the rela-
.~ . tive change in total kinetic energy, normalized to 9 times the kinetic

energy of the central vertex, is

(Y 2) + I I : E; + 0 (E (170)
'Y

where es din/r. Thus kinetic energy is lost where the grid moves toward

higher velocity, and gained where it moves toward lower velocity.

It is possible to force the conservation of total energy by transport-

K'. ing it instead of internal energy, as described by Rrackbill in (Ref. 5).

This scheme is optional in the code. When it is used, a loss of kinetic

5. energy during the momentum and mass transport steps will result in a
decrease in the internal energy. The integrated effect may be large enough
to cause the internal energy of some cell to become negative. In addition

to being unphysical, this results in interpolation off the edge of the
equation of state tables, and sometimes produces negative temperature or

negative squared sound speed. As the square roots of these quantities

AZ figure in the computation of Spitzer diffusivities and time-step,

respectively, this will cause the simulation to terminate with a floating
point error.

The principal cause of these problems is that the mass fluxes and edge

densities of the other fluxed quantities are selected explicitly. A trans-

port scheme which conserves total energy, momentum, and mass and maintains

positivity of internal energy and density probably requires the simultane-

ous implicit determination of the fluxes of these quantities from the

differenced forms of the conservation laws. Such a procedure would be

expensive to code and to run.
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9. DISCRETIZATION OF BOUNDARY CONDITIONS

Each difference equation detailed in the previous sections applies at

any vertex or cell where all data its evaluation requires is defined at all

surrounding vertices or cells. Clearly, there must be edges or boundaries

since only a finite amount of data may be stored. Thus some data around

* the edge of the problem region must be generated by separate equations;

these are the difference forms of the physical boundary conditions. There

are two distinctly different ways they could be applied.

In the first, the physical boundary conditions are applied to deter-

mine expressions for the data outside but adjacent to the edge of the

* problem region in terms of data inside the problem region. Then, different

difference equations for the edges are derived by substituting these

expressions into the general difference equations.

The second approach avoids the derivation of the boundary difference

equations; space is provided for the surrounding data, and those values are

computed explicitly from the expressions derived from the physical boundary

conditions. Thus the full difference equations may be applied to the

boundary cells or vertices, just as to the interior cells and vertices.

The extra storage locations are referred to as ghost cells or ghost

vertices, depending on the type of the data under consideration, and this

approach is called the ghost cell technique. The cells and vertices where

the full difference equations are applied are referred to as real cells or

real vertices.

In MACH?, boundary conditions throughout the code are applied using

ghost cells. The principal advantage of this choice is that the expres-

sions for the exterior data are simpler to code than the boundary differ-

ence equations. The principal disadvantage is the extra storage required.

A lesser disadvantage, the extra computations required at the boundary, is

of negligible effect, since these are carried out in a vectorizable loop.
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Since s;impler code is more reliable, the choice has the effect of using
slightly greater computer resources to reduce the physicist resources

%i required to run a given simulation.

Ghost cell boundary condition application works well with finite

volume differencing, because only first order differences are computed. To

correctly compute vertex differences of cell centered quantities along the

boundary, it is necessary to fill that boundary's ghost cells with appro-

priate data before the difference computation. However, the cell centered

differences of vertex data along a boundary do not reference ghost vertex

data; thus it is not usually necessary to fill ghost vertices with data

before performing the differences.

9.1 LOCATION OF GHOST VERTICES

The geometric coefficients described in Section 7.4 are the principal

exception to the rule just expressed. They are differences of the vertex

coordinates, and are thus cell quantities. Their values are required in

the ghost cells to compute boundary differences such as the gradient or

curl of cell centered quantities, as in Equations 121 and 133. While these

ghost cell values could be determined by symmuetry considerations, it is

more reliable to set ghost vertex locations and compute the ghost cell

values of the geometric quantities exactly as for the real cells.

9.1.1 Boundary Ghost Vertex Location--There are two cases for the

* formation of ghost vertices at a given boundary of a given block. In the

first, another block abuts this one across this boundary. The relevant

physical boundary condition is continuity of physical data, so the ghost

vertex positions in this block are copied from the first interior row of

vertices in the adjoining block. Thus, the ghost cells exactly overlay the

first row of cells in the neighbor block as in Figure 15. The proper cou-

pling of physical processes is ensured by the simple expedient of copying
data from the neighbor block into the ghost cells of the present block.
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Figure 15. Ghost cells on boundary with neighbor block.
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In the second case, i.e, no adjoining block across this boundary, the

ghost vertex locations are created using the locations of the vertices in

this block. Since most of the physical boundary conditions described in

Section 3 involve normal and tangential derivatives, the ghost vertices are

positioned to facilitate the computation of those. The position of each

vertex in the first interior row is reflected out through the tangent to

the boundary at the nearest boundary vertex to form the ghost vertex at

that row or column (see Figure 16). The tangent vector used is the

centered difference of the adjacent boundary vertices after being rotated

outward and normalized to unit length. At the ends of the boundary, the

one sided difference is used for the tangent instead of the centered

difference.

*If the boundary turns too sharply, then this process will generate

ghost cells which are bow tied as in Figure 17. In most instances, this

will be avoided if the distance from the boundary to the next gridline

inward is less than the radius of curvature of the boundary.

9.1.2 Corner Ghost Vertex Location--The scheme described above does

not determine the ghost corner vertex location. It is important to

position it so that the corner ghost cell formed should, when possible,

overlay physically corresponding cells in neighbor blocks, be they ghost or

real. There are four cases, corresponding to the number of blocks which

may come together at a corner.

If there is only one block incident at the given corner, the corner
ghost vertex is positioned so as to make the corner ghost cell a parallelo-

gram as shown in Figure 18a. If the interior angle of the block corner is

less than 60 degrees, such as in Figure 18h, the resulting corner ghost

cell will have negative area and volume. This restricts the range of

problems.

When two blocks meet at a corner, they are required to also meet in a

whole edge. Then the ghost corner vertex position is chosen to be the

same as the position of the ghost vertex from the neighbor block adjacent
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to the real vertex which is itself adjacent to the real corner vertex along

the non-coincident edge as in Figure 19. Note that this means that all

boundary ghost vertices in all blocks must be positioned before any corner

ghost vertex positions are determined.

When three blocks come together at a corner, the effort required to

make the ghost vertices overlap near that corner is far too great, even to

achieve validity only for a limited set of grids. Hence, the ghost vertex

in each block is positioned, just as for the case of a one block corner, by

making the ghost corner cell a parallelogram. The four cells adjacent to

the corner may thus be quite different from block to block (see Figure 20).

This results in different values for the geometric coefficients in cells

4.4 near the corner, and different values of vertex differences such as current

density at the real vertex. For some quantities, these different values

may be sensible, as they may be considered to be the different limits of

that physical quantity as the corner is approached from different
4. directions. For others, such behavior may be unphysical or may generate

numerical instability. In those cases, it may be appropriate to average

the different representations together and set all of them to the same

value.

The case of four blocks meeting at a corner is easily handled. The

ghost corner vertex is placed at the natural position, coincident with the

appropriate real vertex in the block diagonally opposite the one under con-

sideration as shown in Figure 21.

When two blocks come together at a corner and the non-coincident edge

is not a straight line, a further problem exists with the ghost vertex

adjacent to the real corner vertex off the non-coincident edge. Recall

that the tangent vector at the end of a boundary points directly toward the
next vertex along that boundary in that block. Hence, the tangent vectors

at the corner points of the two blocks are not identical. As Figure 22
shows, the two representations of that ghost vertex will then have differ-

ent positions due the use of different tangent vectors to reflect the

interior vertex outward. In this case it is advisable to average these two
positions and use the result for both.
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Of course, there is an effective radius of curvature at such a corner,
and the ghost cells may bow tie there unless care is taken. That radius is

approximately

dl + dl'(1)
*~ 2 si n 8 11

where e is the angular change of the boundary at the corner, and dl and dl'

are the distances from the corner to the nearest neighbor gridpoints along

the boundary.

9.2 SCALAR BOUNDARY CONDITIONS

The physical boundary conditions described in Section 3 apply to both

scalar and vector functions. Most of those applicable to scalar functions

are of one of two forms: either

0. = on 3R (172)

or

p f on 3R (173)

for some unknown scalar function and some known scalar function f. In

almost all cases, 0 is a cell centered quantity.

Equation 172 may then be implemented by simply setting the ghost cell

values of * equal to its values in the adjacent real boundary cells.

Because of the way the ghost cells were constructed above, the normal deri-

vative of 0 at the boundary will be zero to at least second order in dl.

One special case of particular interest is Equation 25, the conducting wall

boundary condition for Be. This is implemented by forming the cell

centered radii in the ghost cell and the real cell, dividing former by the

latter, and setting the ghost cell value of B86 to the product of that ratio

and the real cell value of Be.
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In most cases involving Equation 173, the function f is constant. For

cell centered ,, it might be argued that the correct way to implement this

is to set the ghost cell value of so that the average of the ghost and

real cell values is f, i.e.,

g = 2f - r (174)

where the subscripts r and g stand for real and ghost, respectively. How-

ever, as the result of this boundary condition will surely be that

r " g (175)

* it may be implemented nearly as accurately by simply applying

- =f (176)
g

Once again B is a special case. Equation 26, one form of Ampere's Law, is

implemented by setting

S- (177)
' 2 2rr"rc

where rc is the cell centered radius and I is the total current flowing

between this boundary and the axis of cylindrical symmetry.

9.3 VECTOR BOUNDARY CONDITIONS

The vector boundary conditions of Section 3 are mostly of one of the

following three forms

n *v • 0 on aR (178)
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* or

v 0 on 3R (179)

or

u 1 "7 7u2  0V) oon OR (180)

where each of U, and U 2 is either n or t. Two such conditions are applied

to any vector field on each boundary, with Equation 179 counting as two.

9.3.1 Vertex Centered Fields--If V is vertex centered, then Equations

178 and 179 may be applied directly to the real boundary vertex data.

1P Equation 178 is applied by replacing the values of V using

V +( V) t (181)

* No ghost vertex values need to be set. The tangent t is computed using

"upwind" differencing for quantities V which have direct effect on the grid

positioning, such as the grid displacement or fluid velocity. This means

that the tangent is computed using a one sided difference in the direction

* of V, and amounts to having each gridpoint follow the gridpoint ahead.

This is necessary because centered differencing in these cases produces an

instability which destroys the smoothness of the grid on a moving boundary.

For quantities which are not closely coupled to the grid position, centered

differencing for the tangent suffices.

9.3.2 Cell Centered Fields--For cell centered quantities V, Equations

178 and 180 are the most commonly used. One condition on the normal corn-

C, ponent and another on the tangential component are required at each

boundary. This pair of conditions is combined into a single simple geo-

metric relationship between the ghost cell value and the real edge cell

value of the vector field. For example, the perfectly conducting wall con-

dition for 8r and Bz, from Equation 24, is
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and on 3R (182)

n *7 C.) 0)

These may be accomplished by setting the normal component of (Br B ) in
the ghost cell equal to the negative of its value in the adjacent real edge

cell, and the tangential component equal to its real edge value.

Geometrically, this is equivalent to reflecting (BrI B z) out through

the tangent to boundary. It is by this geometric description, tangent

reflection, that the operation is identified in the code. Other similar

geometric operations which are used include normal reflection, and normal

and tangent projection.

9.4 SEQUENCING BOUNDARY CONDITIONS TO CONTROL CORNER VALUES

Which of the two boundary conditions to apply at a corner is too

difficult a question to answer a priori. Therefore, this choice is left

- open so that it may be settled differently in different cases by careful

thought or experiment. The choice is made for each physical boundary con-

dition by specifying an order for the boundaries of each block. Since, the

boundary conditions are set from one ghost corner to another, the last con-

dition applied on the two boundaries meeting at a given corner determines

that corner's ghost cell value.

'p.0
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